Image Quality Assessment Based on Improved Structural SIMilarity

نویسندگان

  • Jinjian Wu
  • Fei Qi
  • Guangming Shi
چکیده

In this paper, we propose a novel image quality assessment (IQA) based on an Improved Structural SIMilarity (ISSIM) which considers the spatial distributions of image structures. The existing structural similarity (SSIM) metric, which measures structure loss based on statistical moments, i.e., the mean and variance, represents mainly the luminance change of pixels rather than describing the spatial distribution. However, the human visual system (HVS) is highly adapted to extract structures with regular spatial distributions. In this paper, we employ a self-similarity based procedure to describe the spatial distribution of image structures. Then, combining with the statistical characters, we improve the structural similarity based quality metric. Furthermore, considering the viewing condition, we extend the ISSIM metric to the multi-scale space. Experimental results demonstrate the proposed IQA metric is more consistent with the human perception than the SSIM metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Image Structural Similarity Index Considering Image Content Detectability Using Maximally Stable Extremal Region Descriptor

The image content detectability and image structure preservation are closely related concepts with undeniable role in image quality assessment. However, the most attention of image quality studies has been paid to image structure evaluation, few of them focused on image content detectability. Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) measu...

متن کامل

An Improvement of Structural Similarity Index for Image Quality Assessment

The image quality assessment has been widely used in image processing. Several researches have been developed and carried considering the Human Visual System (HVS). Under the hypothesis that human visual perception is extremely adapted to retrieve structural information from a scene, the SSIM index is the most widely used in this area, which leads to a better correlation with HVS. Despite its r...

متن کامل

Improving the quality of images synthesized by discrete cosines transform – regression based method using principle component analysis

  Purpose: Different views of an individuals’ image may be required for proper face recognition.   Recently, discrete cosines transform (DCT) based method has been used to synthesize virtual   views of an image using only one frontal image. In this work the performance of two different   algorithms was examined to produce virtual views of one frontal image.   Materials and Methods: Two new meth...

متن کامل

Human visual perception-based image quality analyzer for assessment of contrast enhancement methods

Absolute Mean Brightness Error (AMBE) and entropy are two popular Image Quality Analyzer (IQA) metrics used for assessment of Histogram Equalization (HE)-based contrast enhancement methods. However, recent study shows that they have poor correlation with Human Visual Perception (HVP); Pearson Correlation Coefficient (PCC)<0.4. This paper, proposed a new IQA which takes into account important pr...

متن کامل

Image Quality Assessment Using Gradient-weighted Structural Similarity

Digital images are subject to a wide variety of distortions during image processing application, and it is necessary to develop objective image quality metric to evaluate the degradation automatically. Images are prepared for human eyes so that the assessment result must be consistent with human visual effect. Structure Similarity (SSIM), a well-known objective image quality assessment, is prop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012